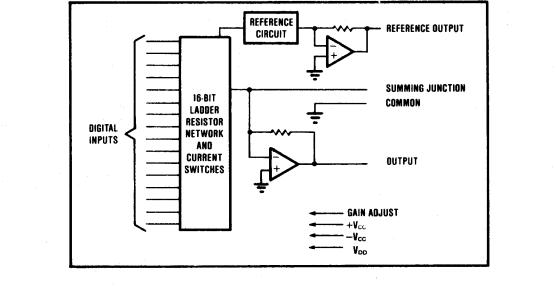


FOR COMMERCIAL APPLICATIONS

Monolithic 16-Bit Resolution DIGITAL-TO-ANALOG CONVERTER

FEATURES

- COMPLETE D/A CONVERTER: INTERNAL REFERENCE ±10V OUTPUT OPERATIONAL AMPLIFIER
- 14-BIT ACCURACY (K GRADE): ±0.003% FSR LINEARITY ERROR 14-BIT MONOTONICITY GUARANTEED 0°C to +70°C
- SETTLING TIME 10µs, MAX
- ±15V POWER SUPPLY OPERATION
- 24-PIN MOLDED PLASTIC DIP


DESCRIPTION

The low prices of DAC1600JP and DAC1600KP make these very-high resolution D/A converters the best value available.

The DAC1600 family offers TTL input compatibility, guaranteed monotonicity (13-bit, J grade; 14-bit, K grade) over 0°C to +70°C and settling time of 10 μ sec maximum.

This precision component is made possible using Burr-Brown's proprietary monolithic integrated circuit process which has been optimized for converter circuits. A stable subsurface reference zener, lasertrimmed thin-film ladder resistors, and high speed current switches combine to give superior performance over the rated temperature range.

The DAC1600 is priced and specified for applications where high resolution and monotonocity are the key application parameters and where tightlyspecified performance over temperature is not required. Because of the low price, it is feasible to use a 16-bit D/A converter for new applications in communications systems, electronic controllers, electronic games, and personal computer peripherals.

International Airport Industrial Park - P.O. Box 11400 - Tucson, Arizona 85734 - Tel. (602) 746-1111 - Twx: 910-952-1111 - Cable: BBRCORP - Telex: 66-6491

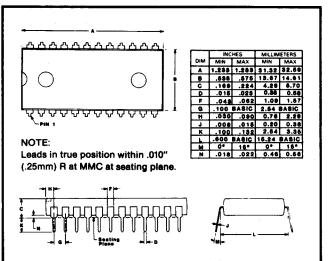
@1985 Burr-Brown Corporation

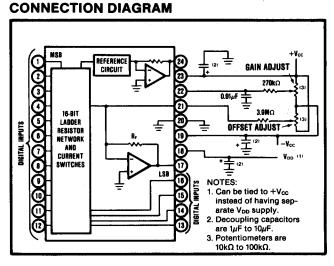
SPECIFICATIONS

ELECTRICAL

Typical at $+25^{\circ}$ C. \pm V_{CC} = 15V, V_{DD} = +5V unless otherwise noted.

MODEL	DAC1600JP-V	DAC1600KP-V	UNITS
INPUTS			
DIGITAL INPUTS			
Input Code ⁽¹⁾	СОВ		
Resolution, max	16	*	Bits
Digital Logic Inputs ⁽²⁾ :			Dito
VIH, min to max	+2.4 to +Vpp	•	v
V _{IL} , min to max	-1.0 to +0.8	*	v
$I_{\rm H}, V_{\rm I} = +2.7 V, {\rm max}$	+40	*	μA
$I_{1L}, V_{1} = +0.4V, max$	-0.5	*	mA
TRANSFER CHARACTERISTIC	s		
ACCURACY			
Linearity Error, max ⁽³⁾	±0.006	±0.003	% of FSR ⁽⁴⁾
Differential Linearity Error,			
max	±0.012	±0.006	% of FSR
Gain Error, max ⁽⁵⁾⁽⁶⁾	±0.3	*	%
Bipolar Zero Error, max ⁽⁵⁾	40	*	mW
Monotonicity Over 0°C to			
+70°C ⁽⁷⁾	13	14	Bits
Sensitivity of Gain to Power	_		
Supply Variations:			
±Vcc	±0.002	*	% of FSR/%Vcc
Vpp	±0.0002	. +	% of FSR/%Vpp
TEMPERATURE			
COEFFICIENTS			
Gain	±10	•	ppm/°C
Bipolar Zero	±5		ppm of FSR/°C
SETTLING TIME (to ±0.003%			
of FSR) ⁽⁶⁾ , 10V step and 2kΩ			·
load, max	10	+	μsec
OUTPUT			
ANALOG OUTPUT	 		
Voltage Range, min	±10	*	v
Current, min ⁽⁹⁾	±10 ±5		mA
Impedance	15 0.15	•	Ω
	0.15		32
REFERENCE OUTPUT			
Voltage ⁽¹⁰⁾	+6.3	•	v
Source Current Available			
for External Loads, max	+1.5	•	mA
Temperature Coefficient	±10	+	ppm/°C
POWER SUPPLY REQUIREMEN	NTS		
RATED VOLTAGE			
±Vcc ⁽¹¹⁾	15	*	v
V _{DD} ⁽¹²⁾	+5	•	v
CURRENT, max(13)			
±Vcc	35	*	mA
VDD	8	*	mA
TEMPERATURE RANGE	I		-
For parameters specified			
over temp, min/max	0 to +70	*	°C
Storage, min/max	-60 to +100	÷	°C
otorago, mini max			, v


NOTES: (1) COB = Complementary Offset Binary. (2) Digital inputs are TTL-compatible for V_{DD} over the range of +4.5V to +V_{cc}. Digital input specs are guaranteed over 0°C to +70°C. These specs are tested at 25°C only. (3) $\pm 0.003\%$ of FSR is 1/2LSB at 14 bits. (4) FSR means Full Scale Range and is 20V for a $\pm 10V$ range. (5) Adjustable to zero with external potentiometer. (6) Adjusting the gain potentiometer rotates the transfer function around Bipolar Zero, 0V (Input Code 7FFF_H). (7) Guaranteed. Tested at 25°C only. (8) Guaranteed. Not tested. (9) Output may be indefinitely shorted to Common without damage. (10) Tolerance is $\pm 5\%$. (11) Range of operation is $\pm 13.5V$ to $\pm 16.5V$. (12) V_{DD} may be operated up to +V_{cc}. Digital input logic threshold remains at +1.4V over the V_{DD} range. (13) Typical power supply currents are about 50% of the maximum.


ABSOLUTE MAXIMUM RATINGS

+V _{CC} to Common 0V, +18V -V _{CC} to Common 0V, -18V V _{DD} to Common 0V, +18V Digital Data Inputs to Common 0V, +18V Reference Out to Common -1V, +18V Reference Out to Common Indefinite Short to Common External Voltage Applied to D/A Output -5V to +5V	
Vour Indefinite Short to Common Power Dissipation 1000mW Storage Temperature -60°C to +100°C	
NOTE: Stresses above those listed under "Absolute Maximum Rat- ings" may cause permanent damage to the device. Exposure to absolute maximum conditions for extended periods may affect	

MECHANICAL

device reliability.

ORDERING INFORMATION

Model	Linearity Error & Monotonicity for	1-99	100-999	1000+
DAC1600JP-V	13 bits	\$14.35	\$8.95	\$8.05
DAC1600KP-V	14 bits	15.95	9.95	8.95

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

PIN ASSIGNMENTS

Pin	Description	Pin	Description
1	Bit 1 (MSB)	13	Bit 13
2	Bit 2	14	Bit 14
3	Bit 3	15	Bit 15
4	Bit 4	16	Bit 16 (LSB)
5	Bit 5	17	Vout
6	Bit 6	18	VDD
7	Bit 7	19	-V _{cc}
8	Bit 8	20	Common
9	Bit 9	21	Summing Junction (Zero Adjust)
10	Bit 10	22	Gain Adjust
11	Bit 11	23	+V _{cc}
12	Bit 12	24	+6.3V Reference Output

OPERATING INSTRUCTIONS

POWER SUPPLY CONNECTIONS

For optimum performance and noise rejection, power supply decoupling capacitors should be added as shown in the Connection Diagram. $1\mu F$ to $10\mu F$ tantalum capacitors should be located close to the D/A converter.

EXTERNAL ZERO AND GAIN ADJUSTMENT

Zero and gain may be trimmed by installing external zero and gain potentiometers. Connect these potentiometers as shown in the Connection Diagram and adjust as described below. TCR of the potentiometers should be 100ppm/°C or less. The 3.9M Ω and 270k Ω resistors ($\pm 20\%$ carbon or better) should be located close to the D/A converter to prevent noise pickup. If it is not convenient to use these high-value resistors, an equivalent "T" network, as shown in Figure 1, may be substituted in place of the 3.9M Ω part. A 0.001 μ F to 0.01 μ F ceramic capacitor should be connected from Gain Adjust to Common to prevent noise pickup. See Figure 2 for relationship of zero and gain adjustment.

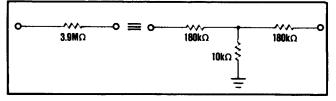


FIGURE 1. Equivalent Resistances.

Zero Adjustment

Apply the digital input code that produces zero output voltage or current. See Table I for corresponding codes and the Connection Diagram for zero adjustment circuit connections. Zero calibration should be made before gain calibration.

Gain Adjustment

Apply the digital input that gives the maximum positive output voltage. Adjust the gain potentiometer for this positive full scale voltage. See Table I for positive full scale voltages and the Connection Diagram for gain adjustment circuit connections.

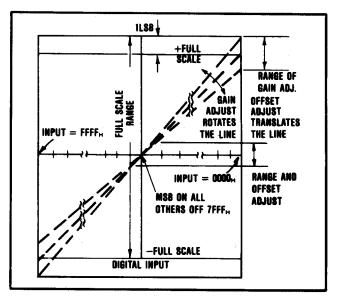


FIGURE 2. Relationship of Zero and Gain Adjustment.

TABLE I. Calibration Table.

		Analog Output				
Digital Input	Description	16-bit	15-bit	15-bit		
One LSB 0000 _H 7FFF _H FFFF _H	One LSB + Full Scale Bipolar Zero - Full Scale	305µV +9.99960V 0V −10.00000V	610µV 9.99939V 0V 10.00000V	1224μV +9.99878V 0V -10.00000V		

INSTALLATION CONSIDERATIONS

This D/A converter family is laser-trimmed to 14-bit linearity. The design of the device makes the 16-bit resolution available. If 16-bit resolution is not required, bit 15 and bit 16 should be connected to V_{DD} through a single $lk\Omega$ resistor.

Due to the extremely-high resolution and linearity of the D/A converter, system design problems such as grounding and contact resistance become very important. For a 16-bit converter with a 20V full-scale range, 1LSB is 305μ V. With a load current of 5mA, series wiring and connector resistances of only 60m Ω will cause the output to be in error by 1LSB. To understand what this means in terms of a sytem layout, the resistance of #23 wire is about 0.021 Ω /ft. Neglecting contact resistance, less than 18 inches of wire will produce a 1/2LSB error in the analog output voltage!

In Figure 3 lead and contact resistances are represented by R_1 through R_3 . As long as the load resistance R_L is constant, R_1 simply introduces a gain error and can be removed during initial calibration. R_2 is part of R_L , if the output voltage is sensed at Common, and therefore introduces no error. R_L should be located as close as possible to the D/A converter for optimum performance. The effect of R_3 is negligible. In many applications it is impractical to sense the output voltage at the output pin. Sensing the output voltage at the system ground point is permissible with the DAC1600 family because the D/A converter is designed to have a constant return current of approximately 2mA flowing from Common. The variation in this current is under 20μ A (with changing input codes), therefore R₃ can be as large as 3Ω without adversely affecting the linearity of the D/A converter. The voltage drop across R₃ (R₃ × 2mA) appears as zero error and can be removed with the zero calibration adjustment. This alternate sensing point (the system ground point) is shown in Figure 3.

The D/A converter and the wiring to its connectors should be located to provide optimum isolation from sources of RFI and EMI. The key concept in elimination of RF radiation or pickup is loop area; therefore, signal leads and their return conductors should be kept close together. This reduces the external magnetic field along with any radiation. Also, if a single lead and its return conductor are wired close together, they present a small flux-capture cross section for any external field. This reduces radiation pickup in the circuit.

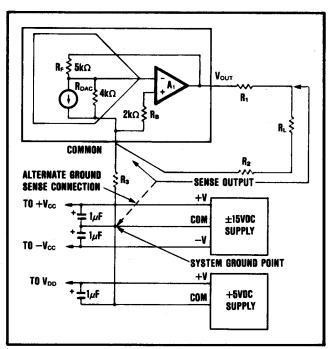


FIGURE 3. Output Circuit.

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins Package Qty	Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
DAC1600JP-V	OBSOLETE	PDIP	NTA	24	TBD	Call TI	Call TI
DAC1600KP-V	OBSOLETE	PDIP	NTA	24	TBD	Call TI	Call TI

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address:

Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2005, Texas Instruments Incorporated